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AMtraet--Slug formation is an entry region phenomena. Waves form on a growing stratified film eventually 
blocking the gas to form a slug. The liquid level drops when the slug is swept away and the waves 
disappear. Then the film rebuilds its level in a time equal to the inverse frequency. The process is modelled 
and the results shown to be in agreement with experiment. 

INTRODUCTION 

When gas and liquid flow simultaneously in a pipe, various flow patterns may result. One of the 
most common of these is slug flow in which coherent plugs of aerated liquid are separated by 
regions of gas riding on a thin liquid film. Pressure drop during slugging may be an order of 
magnitude higher than would be the case if the flow were homogeneous or stratified. 

It is quite important first to be able to predict the conditions at which slug flow will take 
place and second to calculate pressure drop for this complicated flow pattern. The former 
problem has been analyzed by Taitel & Dukler (1976). The latter has been successfully 
approached by Hubbard & Dukler (1965) who modelled steady slug flow and obtained accurate 
predictions for the hydrodynamic behavior including slug and film lengths, velocities and 
pressure drop. However, their model is not complete since it requires the slug frequency as 
input data. The theory shows the pressure drop is almost directly proportional to the slug 
frequency. Thus, it is important to be able to predict this quantity. 

Determining this frequency requires the analysis and understanding of the mechanism of 
slug formation. Visual observations reveal that the slug is created as a result of unsteady waves 
formed on a growing stratified film which blocks the air passage. The entire phenomenon occurs 
near the entrance region and as such it can be classified as an entrance phenomenon in contrast 
to steady slug flow which has been shown to be independent of entry configuration. These 
observations further indicate that whenever slug flow exists the streams are stratified at the 
inlet and the slug formation phenomena can be described as follows: 

Stratified liquid and gas flow into the pipe. The picture just after a slug passes to the right is 
shown in figure 1A. The liquid decelerates and its level rises gradually until it reaches an 
equilibrium level. This level is determined by the forces at the interface and those at the 
walls bounding the two phases as discussed below. The equilibrium surface is unstable and 
solitary waves form and grow as in figure IB. Eventually one wave blocks the air passage 
as shown in figure 1C. As soon as the bridge is formed the liquid is accelerated by the gas, 
sweeping the liquid in front of it forming a slug as in figure 1D. As a result, just 
downstream of the point of closure the level is lower than the equilibrium level. The 
hydrostatic forces due to this difference cause flow into the film and it rebuilds to its 
original level as shown in IA, thus starting a new cycle. 

Due to the multitude of factors influencing the slug frequency, researchers in the past have 
been careful to suggest that use of their results be limited to the range of experimental 
conditions for which the data were taken. Most of the authors report their data in the simple 
form of frequency as a function of liquid and gas flow rates for fixed pipe diameter and fluid 
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SLUG JUST PASSES OUT OF VIEW TO THE RIGHT. LEVEL DROPS. 

LEVEL REBUILDS AND WAVE NEARLY BRIDGES PIPE, 

BRIDGING OF PIPE BY LIQUID: SLUG FORMATION. 

SLUG SWEEPS UP LIQUID: LEVEL DROPS. 

Figure 1. The process of slug formation. 

properties (Dukler & Hubbard 1975; Kordyban & Ranov 1963; Chu 1968; Vermeulen & Ryan 
1971). Recently, however, there has been an attempt to arrive at more general correlations 
(Gregory & Scott 1969; Grescovich & Shrier 1972) without success. These correlations are not 
reliable for use at flow conditions different than the ones used in their construction. 

In this work the complicated entrance phenomenon is modelled using open channel flow 
equations for the purpose of analytically predicting the slug frequency as well as to improve the 
understanding of slug initiation phenomenon. 

ANALYSIS 

The objective of the analysis is to calculate the time, 8, between two successive wave 
closures which form slugs. The frequency is then 1/8. Although measurements show that there 
is some randomness in this cycle time the variance has been shown to be small (Dascher 1970) 
and for the purposes of this work a. fully deterministic model is used with a mean value of # 
between all slugs. 

Starting from the instant at which a wave bridges the pipe the process can be visualized in 
two steps, each requiring a time for completion. 

Time to sweep away the liquid in front of the wave and for the level to drop to its lowest 
value, 01 
Time to build to the equilibrium level, 02 

Observation shows that 01 is very short compared to the cycle time. Furthermore, it is 
observed that almost immediately after the level rebuilds to its equilibrium value a solitary 
wave formed upstream moves across the surface and closes the air gap. The frequency of such 
solitary waves is an order of magnitude larger than the slug frequency so that effective closure 
takes place immediately after the equilibrium level is reestablished. In the event that premature 
closure takes place (i.e. a wave causes closure before the level has rebuilt to he) a nonpersisting 
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slug is formed that either disappears or merges with a previous slug. Thus it is suggested that 
the rebuild time 02 is the characteristic time, 0, for this cyclic phenomena. The problem of 
predicting slug period or frequency reduces to determining the time, 02, to rebuild the film from 
its lowest level, hs, just after a slug has been formed, to the equilibrium level, h,. Predicting 02 
requires the application of the conservation equations for mass and momentum as in an open 
channel flow and the determination of the levels h, and h,. 

Equations for  rebuilding the liquid film 
Figure 2 illustrates the process of rebuilding the film. At t = 0, x = 0, the level is pictured as 

having a step change from h = h, to h = hs. For t > 0 rebuilding of the film takes place as 
shown. Eventually at some point in time and space the level will exceed h, and this is 
considered the time, 02. 

h 

i i i 
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W6 =.009 kcjrn/sec 

EOUILIBRlUM LEVEL h e 
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Figure 2. Solution for film buildup. Water-air in a 3.81 cm dia. pipe. 

The integral momentum and continuity equations for the liquid phase averaged over the flow 
area are given by 

O(UL2AL) Oh OP 
a(uEAL) ~. PL = --~'LSL + riSi - A ~ t g  cos a Pt . . . .  Ot OX AL-~--X + PE ALg sin a' [1] 

OAt O(uLAt) 
- - +  = 0 [2] 

Ot Ox 

where ut is the average liquid velocity, AL the cross sectional area of the liquid, P pressure, Pt 
liquid density and a is the angle between the pipe axis and the horizontal (positive for 
downward flow) and g is the gravitational acceleration. The cross sectional area of the liquid film 
depends on the level of the liquid in the pipe. Thus, using At = AL(h) [1] and [2] take the 
following form 

OUL OUL ¢LSL ~iSi 1 0 P  
. . . . .  4 _- + g sin a, [3] g cos a + + ut-~x pEAL OLAL Pt OX 

Oh Oh A t  OUt 
 +uL + -ffx --o, [4] 

where AL represent differentiation with respect to h. 

For a rectangular pipe AL = hb, where b is the width of a rectangular pipe; for circular pipes 
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the cross sectional area as a function of the elevation from the bottom of the pipe, h, is given by 

AL=r2[1r-cos- '  ( h - 1 ) +  ( ~ -  l) ~ / ( 1 - ( ~ -  l ) : )]  I5] 

where r is the pipe radius. ~'L represents the frictional shear stress between the liquid and the 
solid walls of the pipe and zl the forward stress at the interface caused by the faster moving gas 

over the liquid surface. & and Si are the contact perimeters between the liquid and wall and of 
the liquid-gas interface respectively and are given by 

S t =  2r[zr - -cos  t (  h -  1)], 

S i = 2 r x / [ 1 - ( h - I ) 2 ] .  

I6] 

[71 

To calculate ~'L and zi a conventional method is followed with the additional simplification that 
the gas velocity is much larger than the liquid velocity and that the liquid interface is smooth. In 

this case 

_ ¢ p L U L  2 ¢ pGUG 2 
TL -- JL ~ Ti ~- JG ~ • [8]  

For the friction factors fL and fc we use a Blasius type correlation for both the liquid and the 

gas 

f = CRe-" [91 

where C and n are chosen according to the condition of flow (turbulent or laminar) that exist in 
the liquid or gas. In this work the case was considered of both fluids being turbulent for which 
C = CL--Ca = 0.046 and n = nt = na = 0.2. The Reynoid number is based on the hydraulic 

diameter. For this purpose the liquid is treated as if it flows in an open channel and 
DL =4ALISL whereas the gas is visualized as flowing in a closed duct and thus Dc,-- 
4Aa(Si + SG). 

Next consider the pressure term aP/ax in [3] and turn attention to the equation of motion for 
the gas film. Note that the pressure drop in the liquid and the gas is assumed to be equal at the 
interface. Equations [1] and [2] are, in principal, equally valid for the flow of the gas film. 
However, in the gas region we neglect gravity effects related to the change of the cross 
sectional area. Furthermore, since the gas velocity is much larger than the velocity of the liquid, a 
quasi steady state for that phase can be assumed. In this case we obtain for the gas region 

pa m O(ua2Aa)_ 
cgx 

aP 
~I'GSG - -  T i S i  - -  Aa-~x + p~Aag sin a 

A~uap~ =Wa = const. 

[lO] 

I I 1] 

where W is mass flow rate and the subscript G indicates gas. 
Equations [10-11] result in 

aP Sa S~ ( Wa ~2 A'L ~gh 
- -  = - z a - - -  ri--~G - pc -~-~x + pag sin a. ax Aa \paAa / 

[12] 

The first 2 terms on the R.H.S. of [12] are related to the frictional pressure drop in the gas. The 
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fourth term represents the axial force per unit volume due to gravity. The third term can be 
designated as the "Bernoulli Effect." Upon substituting [12] into [3], it can be shown that this term 
causes the gas-liquid interface to be unstable to small disturbances once 

g PL \paAa/ Aa " [13] 

The "Bernoulli" term describes the creation of unstable waves as a result of decreased 
pressure above the wave due to gas acceleration. Retention of this term causes insurmountable 
mathematical difficulties since it can be demonstrated that no unique unsteady state solution 
exists when [13] is satisfied. However, consistent with our approach of studying the rebuilding 
and drainage cycle of the mean level of the liquid film and disregarding the wave formation in 
the analysis, we can neglect the "Bernoulli term" in this part of the solution. As further 
justification for neglecting this term, it should be noted the solution of [3] and [4] is developed 
only when Ohl0x is negative. Under this condition, the gas passage is a divergent channel and 
when that is the case the presence or growth of waves cannot significantly influence the process 
of film growth. By recognizing the unimportance of the wave growth problem to the modelling 
of the process of rebuilding the film, it is possible to avoid an intractable mathematical 
difficulty. 

Equations [3] and [4] are two simultaneous partial differential equations for h(x, t) and 
UL(X, t). Note that the R.H.S. of [3] is a known function of h and uL. Solving to find the time 
required for the level to move from hs to hs requires only the definition of these two states. 

The equilibrium level, h, 
The equilibrium level h, can be determined independently using a simple (though iterative) 

solution of an algebraic equation which results by equating the R.H.S. of [3] to zero. This 
procedure is equivalent to equating the pressure drop of the gas and liquid in stratified 
equilibrium flows (Taitel & Dukler 1976). Since the slug is formed at a point where steady state 
has already been reached, this suggests that slug frequency is independent of entrance 
geometry. This indeed has been observed experimentally (Hubbard 1965). 

The level, hs 
An intuitive approach to predicting h, is to assume that it is controlled by the hydro- 

dynamics of the slug which was just formed. It would then be identical to the minimum value of 
h predicted from the Hubbard/Dukler model. However, visual studies show that under the 
condition of slug formation, the observed minimum film thickness may be different from that 
calculated from the Hubbard/Dukler model. An alternate speculation is based on the ob- 
servation that hs is equivalent to the neutral stability level, that is, the level below which no 
waves will form at the interface. Large waves are never seen when the liquid level reaches its 
lowest point. A model for this stability level was recently developed by Taitel & Dukler (1976) 
and is one which satisfies the condition 

where 

Wa = C [ (pL-  Pa)g cos aAa] It2 
Ua = paAa L ~aA~ J 

[14] 

Equation [14] with C = 1 is the condition for neutral stability for infinitesimal disturbances 
and is equivalent to the instability criterion given by [13]. However as explained by Taitel & 
Dukler (1976), for finite disturbances the use of [15] for C is more appropriate. For specified gas 
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and liquid flow rates, pipe diameter and fluid properties all terms in [14] and [15] depend 
uniquely on hs and this level, which is~termed "the stability level", thus can be calculated 
directly. While the use of hs is based on observation and not theory, it is consistent with the 
physical notion of the mechanism for formation and initial movement of a slug. When a large 
amplitude wave is present on the surface, it propagates rapidly downstream due to upstream 
gas velocity and tends to sweep the liquid in front of it. As a result, the liquid level continues to 
drop to satisfy conditions of continuity. However, once large waves can no longer exist on the 
film interface, the level is controlled solely by the forces on the planar interface and by the flow 
rates which exist. Then rebuilding of the film can begin. This stability level displays variations 
with gas and liquid rates which coincide with observation. It decreases with increasing gas rate 
out as expected and when hs > he no slugging can take place which is consistent with 
experiment. 

It is now possible to summarize the boundary and initial conditions for this problem 

t = 0  x > 0  h=h~ uL=ue [16] 
t - 0  x = 0  h = he uL= ue. 

Method o[ solution 
Equations [3] and [4] are two simultaneous partial differential equations in h(x, t) and 

uL(x, t). The R.H.S. of [3] is a known function of h and uL and the equations are of the 
hyperbolic type subject to numerical solution by the method of characteristics. However, it is 
more convenient to use finite difference techniques with a simple (x, t) grid so that h(x, t), 
uL(x, t) is given for any preselected time. 

The specific finite difference scheme selected and the boundary conditions depend on 
whether the liquid film flow is tranquil (characteristics have positive and negative slope) or 
supercritical, where characteristics have only positive slope. The condition for supercritical 
flow in a two dimensional channel is X/(gh) < uL. For a circular tube the equivalent expression 
is X/ igAdAD < uL. Calculations demonstrate that for conditions of slug formation the flow is 
always supercritical. As a result the value of both the liquid elevation, h, and velocity, uL, can 
be set at the inlet as given by the boundary conditions [16], (contrary to tranquil flow where 
only one h or uL can be set at the inlet). 

The simplest numerical scheme is one of a first order accuracy and is described by Stoker 
(1957). In this scheme one uses backward differentiation for calculating the derivatives with 
respect to x when both characteristic lines have a positive slope (which is the case for 
supercritical flow). For the time derivative forward difference is employed leading to a simple 
explicit numerical method. The time increment At is chosen so that each new time is less than 
the time given by the characteristic line in order to insure stability of the numerical scheme. Ax 
is chosen in successively smaller increments until convergence is achieved. A second order 
accuracy numerical scheme which may be used is based on the Lax-Wendroff (L-W) scheme as 
described for examples in Richtmyer & Morten (1967) or Mitchell (1969). 

In this work the first order scheme was used. The method is simpler, it handles shocks more 
smoothly compared to the L--W scheme which produced oscillations before and after the shock 
and its accuracy was comparable to the L--W scheme for the same computation time. 

Consider liquid and gas entering the pipe and the stratified flow that results in the entry 
region. A steady state solution of [3] and [4] exists and it shows that the elevation of the liquid 
in the pipe will gradually change to the equilibrium elevation he for which case the pressure 
drop in the gas is equal to that of the liquid. Figure 2 shows one specific solution to such a 
profile. However, as discussed above, when the interface is not stable waves will form and 
grow and will eventually block the gas passage. The shape of the film immediately after slug 
formation is approximated as a step change from the equilibrium elevation he to a film elevation 

hs as shown in figure 2 for t = 0. 
For t > 0 the liquid level rebuilds in a manner shown in figure 2. It is interesting to observe 
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that there is a definite time at which the liquid level starts to overshoot the equilibrium level at a 
position which is farther downstream than the original step change at x = 0. The time it takes 
the liquid to reach the equilibrium level is considered to be the time for slug formation. 
Although waves may form on the rebuilding liquid, a stable slug is not formed unless the liquid 
level reaches h~. After slug formation the liquid film drains again, a step shape profile as shown 
for t = 0 is assumed and the rebuilding cycle starts over again. Note that because the flow is 
supercritical the steady state levels located to tbe left of the step change (x < 0) are unaffected 
by the process taking place downstream (x = 0) and this is as observed experimentally. Thus the 
unsteady state problem need be solved only for x ~ 0. The slug in formed at a point where the 
steady state levels have already been reached and this suggests that slug frequency is 
independent of entrance geometry. This has been observed (Hubbard 1965). 

For inviscid flow this case is similar to the classical "breaking dam problem" (Stoker 1957) 
superimposed on a uniform velocity. Inspection of such a solution shows that a step change 
caused by a breaking dam develops into a profile which contains a "simple wave" followed by a 
zone of constant level followed by a shock. The solution described here, although for circular 
geometry, would be expected to follow the same pattern. A solution obtained for the case of 
inviscid flow showed that this numerical technique tends to smear out the discontinuities in h 
and its gradient. Nevertheless, for the purpose of this model the simple finite difference scheme 
supplies sufficient accuracy in the h(x, t) profile. The more complex second order scheme of 
Lax-Wendroff was attempted for this inviscid case but did not result in better accuracy. 

D I M E N S I O N L E S S  R E P R E S E N T A T I O N  

It is now possible to examine those dimensionless groups controlling the slug frequency 
which are compatible with this model. Consider the following normalizing variables: the tube 
diameter D for length, D 2 for area, the superficial velocities UL* and uo ~ for the liquid and gas 
velocities, respectively and D/UL" for time. Introducing these variables into the differential 
equations and designating the dimensionless quantities by a tilde (') results in the following 
equations: 

a#L+# a#L+I" 1 1Oh. X 2 S__~_L(4~MtL'~-"' 

f 4~oAo I - 2 f 1 r 

off aft AL aaL 
• .-:+ &- - -o  =0. 

[17] 

[18] 

Equations [17] and [18] are the momentum and continuity differential equations for/z(~, [) and 
tiL(~, i') and their solution depends on the parameters FL, Z, X, and Y. 

The dimensionless equilibrium level /~, which is used as a boundary condition can be 
obtained from [17] by setting the derivative terms to zero. In this case an algebraic equation 
results for/~, whose value can be seen to depend only on the parameters X and Y (Taitel & 
Dulder 1976). The dimensionless stability level is obtained from [14] and [15] to yield 

l-h,  ,io 
" F G  = t~o [ d A t J d h ]  1/2" [19] 

Thus the dimensionless frequency will depend on 

rD 
= I(X, Z, FL, F6, Y), [20] 

IlL 
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where: 
4 s p - n  s 2 I/2 [ ( CL]D)(uL 1)] L) LpL(UL ) 12 ] _ [(dPldx)L~] 'n 

X [ ( 4Cd D)( u J  Dl u~ )-"~po( uo')212 J - L ( dPIdx ) J  J ' [211 

/ [ pL(UL~)212D'~ 
Z = ~ / k ~  ] '  [22] 

U s 
L FL= 

~/(gD cos a ) '  [231 

_ ua ~ ~ / (  Pa ) [24] Fa ~/(Dg cos a) \PL - Pa / 

y = g(PL - Pc) sin a 
(dPldx)a~ [25] 

In this set of dimensionless groups X is the Lockhart-Martinelli Parameter and FL is the 
liquid Froude Number. Z represents the ratio of inertial to gas phase pressure drop forces. The 
Fa number emerges from nondimensionalizing of [14] and measures the ratio of inertial forces 
of the gas to gravity forces on the liquid liquid. Y is zero for horizontal tubes and represents 
the relative forces acting on the liquid in the flow direction due to gravity and pressure drop. The 

superscript s is used to indicate a superficial condition, that is, the value which would be 
calculated if that one phase flowed alone in the pipe. 

In a recent paper Grescovich & Shrier (1972) suggested that the slug frequency depends on 
only two dimensionless groups: the mixture Froude Number Fr = (uL s + uo')2lDg and the input 

liquid quality volume fraction A = uifll(ut. ~ + u~'). The authors do not include, for example, the 
data of Gregory & Scott (1969) for 1.9 cm pipes or those of Vermeulen & Ryan (1971) for 
1.27 cm pipes. These data are underpredicted by a factor of two by their correlation. By 
comparison this analysis which is based on a physical model shows that the frequency for 
horizontal tubes depends on four dimensionless groups none of which are similar to those of 
Grescovich & Shrier (1972). Grescovich & Shrier's presentation is not consistent in the sense 
that their two dimensionless parameters are used to correlate a dimensional frequency rather 
than a dimensionless one. 

In this work numerical solutions were generated in dimensional form to compare with the 
experimental data available. An example of the solution of the dimensionless form of the 
equation is also shown. 

COMPARISON OF THEORY WITH DATA 

Experimental data were reported by Hubbard & Dukler (1975) for air-water in a 3.81 cm 
diameter pipe, by Gregory & Scott (1969) for air-CO2 in a 1.9 cm pipe and by Vermeulen & 
Ryan (1971) using air-water in a 1.27.cm diameter pipe. These data are presented in figures 3, 4 
and 5 by a solid line which represents their best fit curve to the experimental data. The results 
calculated from this theory are shown by the dotted lines. 

Comparison of this theory with the Hubbard/Dukler data appears in figure 3 where the 
agreement is seen to be good both in the trend of prediction and in the absolute value of the 
frequency calculated. The theory predicts increasing frequency with liquid rate for any single 
gas rate as observed. It also displays a minimum in the frequency curve with gas rate at 
constant liqud flow as shown by the data. It should be emphasized that the frequency data are 
in no way used in the theory to adjust or position the curves, the only empiricism being the use 
of the well accepted Blasius relationship for calculating the wall shear. 

Agreement of theory with the data of Gregory and Scott as shown in figure 4 is not as 
satisfactory but still quite acceptable, seldom exceeding 25%. The theory again displays the 
correct trend of the data. It should be noted that measurement of frequency is difficult to 
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Figure 3. Comparison of theory with data, water-air, 3.81 cm pipe diameter. 
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Figure 4. Comparison of theory with data, water--C02, 1.9cm pipe diameter. 

accomplish with accuracy. There is a factor of judgement involved, especially at higher liquid 
rates in deciding whether a highly aerated slug should be counted or not. In addition, when 
operating near the transition boundaries between slug and annular flows the difference between 
a slug and a roll wave is difficult to distinguish. 

The agreement between the theory and data of Vermeulen is less satisfactory as shown in 
figure 5. Note that the theory predicts the increase of frequency with gas velocity at all gas 
velocities above the minimum but the data do not display this trend. This trend is in 
contradiction with the data of Hubbard and of Gregory since it is highly unlikely that the 
slugging behavior will be markedly different between 1.9 cm and 1.27 cm diameter pipe. It is 
suspected therefore that Vermeulen's data are questionable, especially for high gas rates. 

This theory will not be able to predict frequency when slugs are created by entrance 
sections of unusual design which do not permit stratified flow to be established as the entry 
region. For example, Chu (1968) measured frequency in a 1.9 cm diameter pipe. He introduced 
his air through a tube located axially extending into the test section. At low gas rates this jet 
type entry appears to have suppressed slug formation and the characteristic minima differ 
markedly from Gregory's data. 

Similarly, Kordyban (1963) reported slug frequencies for air-water flow at rates where slug 



594 y. TAITEL and A. E DUKLER 

5 i I I I 1 

7/ 
/ 

~ / 
\ / 
\ / /  
\ \  / /  

\ " - " ~ u  s =0.79 m/sec 

\ / J  / /  

7 - \  ~ u ,  $ = O 5s 

J 

/ u = 0 3 6  
I 

I I J 

2 4 6 

u~ [m/sec  ] 

v 

[ sec-I ] 

- - V E R M E U L E N  B 
RYAN DATA 

. . . .  THEORY 

I 1 

8 10 12 

Figure 5. Comparison of theory with data, water-air,  1.27 cm pipe diameter. 

flow would not be expected. However, he induced slugs by forcing the fluids through a U tube. 
The slugs thus formed persisted only over a small length of pipe where he was able to observe 
their presence. This slug frequency likewise cannot be predicted by the theory presented here. 

GENERALIZED SOLUTION 

It is advantageous to represent the results for the frequency in a dimensionless form, so that 
one can avoid making a computer solution for every case of interest. However since the 
dimensionless frequency depends on five parameters it is laborious to cover the whole range of 
possible operating conditions. The experiments discussed above include 3 pipe sizes for 
water-air or CO2 systems. For these conditions the values of the parameters vary as follows: 

FL: 0.7-2.2; 
Z: 6-120; 
X: 1-20; 
Y: 0-0; 

F~: 0.08-0.9; 

whereas the result for the dimensionless frequency ranges from 0.05-0.2. The range of values 
of dimensionless frequency is narrow compared to the range of the dimensional frequencies. 
This is a direct result of the parameter selected to scale the frequency, ~ = uDluL ~, Since the 
frequency increases quite strongly with decreasing pipe diameter and increasing liquid flow 
rate, the dimensionless frequency is a weaker function of those variables than is its dimensional 

value. 
Figure 6 shows a typical solution in dimensionless form for fixed values of the parameters 

EL = 2, ZIX = 5 and Y = 0. The results are given in terms of ZIX which equals (4fLs) -1/2 since 
this grouping is weakly dependent on operating conditions. The locus of the transition 
boundaries to stratified flow are shown at the left of each curve by a short vertical line, These 
were determined from the correlation of Taitel & Dukler (1976). For Y = 0 annular flow will 
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Figure 6, Dimensionless slug frequency. 

exist below X = 1.6. Thus this dimensionless representation displays both the frequency of the 
slug and the conditions when slug flow can exist. 

CONCLUSIONS 

A fundamental model has been presented which is shown to predict slug frequency for entry 
sections in which natural slugging is permitted to take place. The agreement with experimental 
data is shown to be within probable limits of data uncertainty. Five dimensionless groups are 
shown to control the dimensionless frequency, (vDlUL*). 
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